Nano-Structured Gratings for Improved Light Absorption Efficiency in Solar Cells
نویسندگان
چکیده
Due to the rising power demand and substantial interest in acquiring green energy from sunlight, there has been rapid development in the science and technology of photovoltaics (PV) in the last few decades. Furthermore, the synergy of the fields of metrology and fabrication has paved the way to acquire improved light collecting ability for solar cells. Based on recent studies, the performance of solar cell can improve due to the application of subwavelength nano-structures which results in smaller reflection losses and better light manipulation and/or trapping at subwavelength scale. In this paper, we propose a numerical optimization technique to analyze the reflection losses on an optimized GaAs-based solar cell which is covered with nano-structured features from the same material. Using the finite difference time domain (FDTD) method, we have designed, modelled, and analyzed the performance of three different arrangements of periodic nano-structures with different pitches and heights. The simulated results confirmed that different geometries of nano-structures behave uniquely towards the impinging light.
منابع مشابه
Enhanced optical absorption in organic solar cells using metal nano particles
In this study, for increasing absorption of the active layer in bulk hetero junction (BHJ) organic solar cells (OSCs) we used surface Plasmon effects of metal nano particles (MNPs). We embedded the MNPs inside the active layer and studied the device structure. For shown the results we investigated the model of our structure with Finite Difference Time Domain (FDTD) numerical method and achieved...
متن کاملEnhanced optical absorption in organic solar cells using metal nano particles
In this study, for increasing absorption of the active layer in bulk hetero junction (BHJ) organic solar cells (OSCs) we used surface Plasmon effects of metal nano particles (MNPs). We embedded the MNPs inside the active layer and studied the device structure. For shown the results we investigated the model of our structure with Finite Difference Time Domain (FDTD) numerical method and achieved...
متن کاملImproving the optical properties of thin film plasmonic solar cells of InP absorber layer using nanowires
In this paper, a thin-film InP-based solar cell designed and simulated. The proposed InP solar cell has a periodic array of plasmonic back-reflector, which consists of a silver layer and two silver nanowires. The indium tin oxide (ITO) layer also utilized as an anti-reflection coating (ARC) layer on top. The design creates a light-trapping structure by using a plasmonic back-reflector and an an...
متن کاملDesign and Analysis of Nano-Structured Gratings for Conversion Efficiency Improvement in GaAs Solar Cells
This paper presents the design and analysis of nano-structured gratings to improve the conversion efficiency in GaAs solar cells by reducing the light reflection losses. A finite-difference time domain (FDTD) simulation tool is used to design and simulate the light reflection losses of the subwavelength grating (SWG) structure in GaAs solar cells. The SWG structures perform as an excellent alte...
متن کاملIntroducing nanostructure patterns for performance enhancement in PbS colloidal quantum dot solar cells
With attention to the thin film structure of colloidal quantum dot solar cells, in this paper in order to improvement of active layer absorption of them, we have proposed the use of nanostructure pattern for enhancement of their performance. For this purpose we have presented suitable nano hemisphare patterns in colloidal quantum dot solar cells for light trapping in absorption layer. Then with...
متن کامل